Drivers & Products | Time Frame | Driver | Product | |-------------------------|---|--| | 8 days- 2 weeks | weather forecasters Emergency management Fishing fleet Fuel resupply/ Public safety / Aviation | guidance for forecast increased chance of storminess ice edge; freezing spray advance notice of prolonged cold/warm | | 3-4 weeks | River Forecast CenterOil & Gas Regulators | river ice breakup guidancesea ice break-up/freeze-up | | 1-2 months | Fire weather forecasters | fuel condition/dryness/storminess/
precipitation temporal distribution | | 3-6 months | Industry operational planning | scheduling: site access probability/ ice road construction window | | 6-8 months | Industry operational planning | Freeze-up/Break up probabilities | | Interannual &
Beyond | Fishery managersEngineers | sea ice/ocean condition for stock
assessment precipitation amount/type for design | ## Initialization data to improve predictions - Considered "low hanging fruit" for improving predictions - Regarding initialization for sea ice forecasts, - better use of upper ocean information for ice freeze up forecasts - ice thickness information may also improve summer predictions - More general challenges - —Effectively using available observations - Obtaining new observations - encourage useful observations from "ships of opportunity", industry, etc.? - new instrumentation for ice-covered waters? - —Can we determine what data will be useful for predictions of other aspects of the Arctic system - In longer term, we need a better understanding of where and what critical observations are needed for Arctic prediction - Design observing networks to fit these needs ## **Evaluating and Improving Predictions** - Low hanging fruit: - -Assessment of existing systems (NMME) for high latitudes - Using NWP knowledge to inform evaluation metrics - –Better capitalize on existing/ongoing research (synthesis efforts?) - Longer term challenge of improving predictions - Need to understand (and communicate) inherent limits of predictability - Need for enhanced process understanding and improvements in models - Coupling across system components, Cloud microphysics